1 概述
液化天然气气化站(以下称LNG气化站),作为中小城市或大型工商业用户的燃气供应气源站,或者作为城镇燃气的调峰气源站,近年来在国内得到了快速发展。
LNG气化站是一种小型LNG接收、储存、气化场所,LNG来自天然气液化工厂或LNG终端接收基地,一般通过专用汽车槽车运来。本文仅就LNG气化站内储罐、气化器、管道系统、消防系统等装置的安全设计进行探讨。
2 LNG储罐
2.1 LNG储罐的工艺设计
LNG储罐是LNG气化站内最主要的设备。天然气的主要成分甲烷常温下是永久性气体,即在常温下不能用压缩的方法使其液化,只有在低温条件下才能变为液体。LNG储罐的工作压力一般为0.3~0.6MPa,工作温度约-140℃,设计压力为0.8MPa,设计温度为-196℃[1]。
LNG气化站内150m3及以下容积的储罐通常采用双层真空绝热结构,由内罐和外罐构成,内罐材质为0Cr18Ni9不锈钢,外罐材质为16MnR压力容器用钢。内罐和外罐之间是由绝热材料填充而成的绝热层。当外罐外部着火时绝热材料不得因熔融、塌陷等原因而使绝热层的绝热性能明显变差。目前生产厂家所用的绝热材料一般为珠光砂,填充后抽真空绝热。为防止周期性的冷却和复热而造成绝热材料沉积和压实,以致绝热性能下降或危及内罐,宜在内罐外面包一层弹性绝热材料(如玻璃棉等),以补偿内罐的温度形变,使内外罐之间的支撑系统的应力集中最小化。支撑系统的设计应使传递到内罐和外罐的应力在允许极限内。储罐静态蒸发率反映了储罐在使用时的绝热性能,其定义为低温绝热压力容器在装有大于50%有效容积的低温液体时,静止达到热平衡后,24h内自然蒸发损失的低温液体质量与容器的有效容积下低温液体质量的比值。一般要求储罐静态蒸发率≤0.3%[1、2]。除绝热结构外,储罐必须设计成可以从顶部和底部灌装的结构,以防止储罐内液体分层。
2.2 LNG储罐的布局
根据GB 50028—2006《城镇燃气设计规范》的规定,储罐之间的净距不应小于相邻储罐直径之和的1/4,且不应小于1.5m。储罐组内的储罐不应超过两排,储罐组的四周必须设置周边封闭的不燃烧实体防护墙,储罐基础及防护墙必须保证在接触液化天然气时不被破坏。LNG罐区的设计应通过拦蓄设施(堤)、地形或其他方式把发生事故时溢出的LNG引到安全的地方,防止LNG流入下水道、排水沟、水渠或其他任何有盖板的沟渠中。储罐防护墙内的有效容积V应符合下列规定:①对因低温或因防护墙内一储罐泄漏、着火而可能引起的防护墙内其他储罐泄漏,当储罐采取了防止措施时,V不小于防护墙内最大储罐的容积。②当储罐未采取防止措施时,V不小于防护墙内所有储罐的总容积。
2.3 储罐抗震、防雷、防静电设计
GB 50223—2004《建筑工程抗震设防分类标准》规定,20×104人以上城镇和抗震设防烈度为8、9度的县及县级市的主要燃气厂的储气罐,抗震设防类别划为乙类。美国NFPA59A《液化天然气(LNG)生产、储存和装运标准》(2001年版)规定,LNG气化站内设施及构筑物的抗震设计应考虑操作基准地震(OBE)和安全停运地震(SSE)两种级别地震的影响。操作基准地震(OBE)是指设施在其设计寿命期内可承受的可能发生的地震,即在该级别地震发生时,设备将保持运行。安全停运地震(SSE)是指气化站所在地罕见的强烈地震,设施设计应能保存LNG并防止关键设备出现灾难性故障,不要求设施在发生SSE后保持运行。LNG罐区防护墙及其他拦蓄系统的设计至少在空载时能承受SSE级别的荷载,要求在发生SSE之后,LNG储罐可能会出现故障,但防护墙和其他拦蓄系统必须保持完好。凡是失效之后可能会影响到LNG储罐完整性的系统和构件,以及隔离储罐并保证它处在安全停运状态所需要的系统组件,必须能承受SSE而不发生危险。LNG储罐应按照OBE进行设计,并按照SSE进行应力极限校核。在工厂内制造的储罐,其设计安装应符合ASME《锅炉和压力容器规范》(2007年版)的要求,储罐和支座的设计还应考虑地震力和操作荷载的组合作用,使用储罐或支座设计规范标准中规定的许用应力增量。
LNG气化站的储罐区设置地下避雷接地网,LNG储罐的支柱与避雷接地网连接,LNG储罐上无须设置防雷保护装置。站区的防雷设计应符合GB 50057—94《建筑物防雷设计规范》(2000年版)中“第二类防雷建筑物”的有关规定。防静电设计应符合HG/T 20675—1990《化工企业静电接地设计规程》的要求。